Herbicide resistances in Amaranthus tuberculatus: a call for new options.

نویسندگان

  • Patrick J Tranel
  • Chance W Riggins
  • Michael S Bell
  • Aaron G Hager
چکیده

Amaranthus tuberculatus is a major weed of crop fields in the midwestern United States. Making this weed particularly problematic to manage is its demonstrated ability to evolve resistance to herbicides. Herbicides to which A. tuberculatus has evolved resistance are photosystem II inhibitors, acetolactate synthase inhibitors, protoporphyrinogen oxidase inhibitors, and glyphosate. Many populations of A. tuberculatus contain more than one of these resistances, severely limiting the options for effective herbicide control. A survey of multiple-herbicide resistance in A. tuberculatus revealed that all populations resistant to glyphosate contained resistance to acetolactate synthase inhibitors, and 40% contained resistance to protoporphyrinogen oxidase inhibitors. The occurrences of multiple-herbicide resistances in A. tuberculatus illustrate the need for continued herbicide discovery efforts and/or the development of new strategies for weed management.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Managing the evolution of herbicide resistance

BACKGROUND Understanding and managing the evolutionary responses of pests and pathogens to control efforts is essential to human health and survival. Herbicide-resistant (HR) weeds undermine agricultural sustainability, productivity and profitability, yet the epidemiology of resistance evolution - particularly at landscape scales - is poorly understood. We studied glyphosate resistance in a maj...

متن کامل

Mechanism of resistance to mesotrione in an Amaranthus tuberculatus population from Nebraska, USA

Amaranthus tuberculatus is a troublesome weed in corn and soybean production systems in Midwestern USA, due in part to its ability to evolve multiple resistance to key herbicides including 4-hydroxyphenylpyruvate dioxygenase (HPPD). Here we have investigated the mechanism of resistance to mesotrione, an important chemical for managing broadleaf weeds in corn, in a multiple herbicide resistant p...

متن کامل

A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase.

Herbicides that act by inhibiting protoporphyrinogen oxidase (PPO) are widely used to control weeds in a variety of crops. The first weed to evolve resistance to PPO-inhibiting herbicides was Amaranthus tuberculatus, a problematic weed in the midwestern United States that previously had evolved multiple resistances to herbicides inhibiting two other target sites. Evaluation of a PPO-inhibitor-r...

متن کامل

Inheritance of Mesotrione Resistance in an Amaranthus tuberculatus (var. rudis) Population from Nebraska, USA

A population of Amaranthus tuberculatus (var. rudis) evolved resistance to 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicides (mesotrione, tembotrione, and topramezone) in Nebraska. The level of resistance was the highest to mesotrione, and the mechanism of resistance in this population is metabolism-based likely via cytochrome P450 enzymes. The increasing number of weeds resistant...

متن کامل

Interspecific hybridization transfers a previously unknown glyphosate resistance mechanism in Amaranthus species

A previously unknown glyphosate resistance mechanism, amplification of the 5-enolpyruvyl shikimate-3-phosphate synthase gene, was recently reported in Amaranthus palmeri. This evolved mechanism could introgress to other weedy Amaranthus species through interspecific hybridization, representing an avenue for acquisition of a novel adaptive trait. The objective of this study was to evaluate the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of agricultural and food chemistry

دوره 59 11  شماره 

صفحات  -

تاریخ انتشار 2011